
Driver Drowsiness Detection Using
Onboard Camera

Final Year Project by:

Shaheer Ahmed

Noor ul Huda Ajmal

In Partial Fulfilment of the Requirements

for the Degree Bachelors in Software Engineering

(BESE)

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology,

Islamabad, Pakistan

(2023)

DECLARATION

We hereby declare that this project report entitled “Driver Drowsiness
Detection Using Onboard Camera” submitted to the “Department of
Software Engineering”, is a record of original work done under the guidance
of our Supervisor “Dr. Hasan Ali Khattak” and Co advisors “Mr. Maajid
Maqbool” and “Dr. Bilal Ali”. No part of the report has been plagiarized
without citations. Also, this project work is submitted in the partial fulfilment
of the requirements for the degree of Bachelor of Software Engineering.

Team Members

Shaheer Ahmed

Noor ul Huda Ajmal

Signatures:

Advisor:

Dr Hasan Ali Khattak

Co Advisors:

Mr. Maajid Majbool

Dr. Bilal Ali

Signatures:

Table of Contents

1. INTRODUCTION

1.1.Problem

1.2.Proposed Solution: Driver Drowsiness Detection

1.3.Core Functionalities

1.4.Summary

2. LITERATURE REVIEW

2.1.Accidents Due to Drowsiness

2.2.Existing Solutions

2.3.Why Driver Drowsiness Detection System

3. PROBLEM DEFINITION

3.1.System aim

3.2.Audience Of The Project

3.3. Impact

4. SYSTEM FEATURES

4.1.Functional Requirements

4.2.Use cases

4.3.Tools and Technologies

5. DETAILED DESIGN AND ARCHITECTURE

5.1.SYSTEM ARCHITECTURE

5.1.1. Architecture Design Approach

5.1.2. Architecture Design & Subsystem Architecture

5.1.3. Dataflow of the system

5.2.DETAILED SYSTEM DESIGN

5.2.1. Drowsiness Detection

5.2.2. Accident Detection

5.2.3. Website

6. IMPLEMENTATION AND TESTING

6.1.Workflow

6.1.1. Research and overview

6.1.2. Compiling Dataset

6.1.3. Training Model

6.1.4. Testing Model

6.1.5. Setting up system (edge device)

6.1.6. Developing the website

6.2.Testing

6.2.1. Unit Testing

6.2.2. System Testing

7. RESULTS AND DISCUSSION

8. CONCLUSION AND FUTURE WORK

8.1.Conclusion

8.2. Impact on Society

8.3.Future Work

9. REFERENCES

Table of Figures
Figure 1 Drowsiness Detection and Alert Driver Use case...................................12
Figure 2 Accident Detection Use case...12
Figure 3 Website Use case...13
Figure 4 IR Camera..15
Figure 5 MPU6050 Accelerometer..16
Figure 6 Raspberry Pi 4 b...17
Figure 7 High level architecture Block diagram...20
Figure 8 UML Diagram for Website architecture..21
Figure 9 Edge Device Dataflow... 23
Figure 10 Website Dataflow..24
Figure 11 System Activity Diagram...25
Figure 12 Dlib Facial Landmarks..26
Figure 13 CNN model architechture..27
Figure 14 Drowsy Driver Event...28
Figure 15 Accident Detection Event..29
Figure 16 Home Page..30
Figure 17 Services Page..31
Figure 18 Application Page..32
Figure 19 Subscription Page..33
Figure 20 Login View... 33
Figure 21 Admin Panel..34
Figure 22 User Panel... 34
Figure 23 Models View.. 35
Figure 24 Complaints View..35

../../../C:/Users/there/Desktop/FYP/Final%20Def/Driver%20Drowsiness%20Detection%20Using%20Onboard%20Camera.docx#_Toc134965620
../../../C:/Users/there/Desktop/FYP/Final%20Def/Driver%20Drowsiness%20Detection%20Using%20Onboard%20Camera.docx#_Toc134965601
../../../C:/Users/there/Desktop/FYP/Final%20Def/Driver%20Drowsiness%20Detection%20Using%20Onboard%20Camera.docx#_Toc134965600

INTRODUCTION

Driving is an indispensable part of commuting. Many people rely on it as a
means to perform daily tasks, for some it is even a source of living. However,
driving for an extended period of time or driving at odd hours of the day can
cause the driver to be inattentive to the road. This is especially dangerous
since it not only puts the passengers at risk, but other commuters and
pedestrians as well.

It is estimated that about 2.5 million car crashes involve distracted drivers
globally every year. [1] Many of these accidents are simply due to driver
inattentiveness and as such can be curtailed by simply monitoring negligent
behaviour.

1.1 PROBLEM STATEMENT

Driver Drowsiness systems are still a niche product despite being a
considerably mature technology. Although some proprietary and
aftermarket systems exist, they are either out of reach or simply too
unreliable to be used.

With more people taking to the roads every year, there is unprecedented
market potential for a product that can deliver the utility for the said market
segment. The target demographic would be anyone eligible to drive a
vehicle, irrespective of their gender and age group (18 years or older).

1.2 Proposed Solution

The driver drowsiness detection system will be a reliable, cost effective
aftermarket system that can keep track of driver’s attentiveness to help
prevent accidents due to driver inattentiveness, keeping the other
commuters and pedestrians safe from easily avoidable accidents.

The system will consist of an edge device along with a camera. A neural
network model utilizing computer vision would be deployed on the edge
device that would keep check of the driver’s behaviour, making sure that the
driver is attentive to the road. It will use a buzzer to either the vehicle’s stereo
system to alert the driver.

A novel feature of this system would be a subscription based service. The
users would be provided with monthly system updates designed to improve
the safety and performance of the system. The users would use the
companion website to download system updates.

Furthermore, in an event of an accident, the user’s footage can be recorded
by the system. The users can choose to share this footage with the
developers to improve device safety. Hence the developers can implement
Continuous Quality Improvement (CQI), a feat that has not been achieved in
this product segment.

1.3 Core Functionality

The main functions of this project include:

Drowsiness detection

The system will detect and capture the drowsiness behaviour of the driver
while driving, following the image input from the camera. It will be
accompanied with getting model predictions in real time. This feature is of
high priority to the system.

Alerting Driver

The system shall alert the driver upon detecting drowsiness by the
application of buzzer. This feature is of high priority to the system.

Accident Detection

The system shall user accelerometers attached to the board to detect an
accident. The system shall capture the last few seconds of the driver’s
footage in case of an accident. This footage can then be used by the
developers to improve the Neural Network of the system in case the accident
was caused due to product error.

1.4 Summary

Driving can lead to inattentiveness, putting passengers, other commuters,
and pedestrians at risk. Current driver drowsiness detection systems are
unreliable or inaccessible. This project will utilize computer vision and neural
networks to detect driver behaviour and alert them if they become

inattentive. The system will offer monthly updates and allow for footage
recording in the event of an accident, which can be used to improve system
safety through Continuous Quality Improvement (CQI).

LITERATURE REVIEW

2.1 Accidents Due to Drowsiness

Accidents caused by drowsiness are a significant global issue that can have
severe consequences. According to a report by the World Health
Organization (WHO), drowsiness is responsible for up to 20% of road
accidents worldwide [2]. In the United States alone, drowsy driving causes an
estimated 90,000 crashes, 50,000 injuries, and 800 deaths annually [3].

Despite the alarming statistics, many vehicles do not come equipped with
driver drowsiness detection systems. These systems are designed to
monitor a driver's level of alertness and provide warnings when signs of
drowsiness are detected. However, according to a study conducted by the
European Transport Safety Council (ETSC), only 15% of new cars sold in
Europe in 2020 came equipped with a driver drowsiness detection system [4]

. This, coupled with the lack of any aftermarket systems makes this an
important issue.

2.2 Existing Solutions

While some manufacturers provide similar systems on their luxurious
offerings, these vehicles are still out of reach for most of the population. The
aftermarket offerings are not as reliable as they claim to be.

Examples of systems from a few manufacturers

BMW: Active Driving Assistant with Attention Assistant analyses driving
behaviour and, if necessary, advises the driver to rest [5].

Ford: Driver Alert, introduced with 2011 Ford Focus. The Driver Alert system
comprises a small forward-facing camera connected to an on-board
computer. The camera is mounted on the back of the rear-view mirror and is
trained to identify lane markings on both sides of the vehicle [6].

Examples of aftermarket products

The Speedir state-of-the-art driver monitoring system (DMS) can detect
drowsy drivers by accurately measuring eye and head position, driver
attention and fatigue [7]. It was a promising crowdfunded project that had
managed to achieve 67% of its funding goal, however a high retailing price of
$249 failed to capture the wider audience.

2.3 Why Driver Drowsiness Detection System

A casual glance at the statistics and reports highlight that the lack of reliable
aftermarket drowsiness systems is still an unresolved issue. With the rise of
and strides made in Artificial Intelligence, such a system is more feasible now
more than ever, thanks in part to the wide adoption of smart Internet of
Things (IoT) devices, hence lowering component costs.

PROBLEM DEFINITION

3.1 System aim

The lack of aftermarket drowsiness detection systems is a significant
concern for drivers worldwide. These systems are designed to monitor a
driver's level of alertness and provide warnings when signs of drowsiness
are detected. However, not all vehicles come equipped with this feature,
leaving drivers vulnerable to the dangers of drowsy driving.

This project aims to provide an additional layer of safety by alerting the
driver when signs of fatigue are detected. This can help prevent accidents
caused by drowsiness, which can be fatal in some cases.

Additionally, this detection system can be installed in any vehicle, regardless
of the make or model. This means that drivers do not have to purchase a new
car to access this important safety feature. It can also be a cost-effective
solution compared to buying a new car with built-in driver drowsiness
detection systems.

3.2 Audience Of The Project

Drivers

Drivers who frequently travel long distances, work night shifts, or have sleep
disorders are more likely to experience drowsiness while driving. This system
will benefit these drivers the most as it can provide an additional layer of
safety by alerting them when signs of fatigue are detected.

Passengers and Pedestrians

Passengers in the vehicle and pedestrians will also benefit from the
implementation of the drowsiness detection system. In case the driver
becomes drowsy or loses control of the vehicle due to fatigue, the system
can help prevent accidents and save lives.

3.3 Impact

The implementation of the drowsiness detection system can have a positive
impact on society as a whole. Road accidents caused by drowsy driving can
result in significant economic costs in terms of medical expenses, property

damage, and lost productivity. By preventing such accidents, the
introduction of these systems can help save lives, reduce economic costs,
and improve overall road safety.

SYSTEM FEATURES

4.1 Functional Requirements

The functional requirements for the embedded system are listed as:

Drowsiness Detection

 The system should detect the face of the driver.
 The system should trigger an alarm upon detecting a drowsy driver.
 The buzzer alarm should not turn off until the driver isn’t drowsy.

Alert Driver

 The system should alert the driver upon detecting drowsiness,
through a buzzer alarm.

 The buzzer should not be turned off until the driver is not drowsy.

Accident Detection

 The accelerometer detects deceleration due to accident.
 The last 5 frames of driver footage is saved.

The functional requirements for the web portal will be described as:

Updates Portal:

 The website should allow the user to download the latest version of
the updated models

Complaints Portal:

 The user should be able to upload accident footage recoded by the
embedded system

 The user should be able to add comments to add context to the
footage and the accident

4.2 Use Cases

The embedded system features two main use cases as illustrated below:

Drowsiness Detection and Alert Driver:

Figure 1 Drowsiness Detection and Alert Driver Use case

Accident Detection:

Figure 2 Accident Detection Use case

The use case for the website is illustrated as follows:

Figure 3 Website Use case

4.3 Tools and Technologies

This section delves into the tools and technologies that will be used to
construct the project. It covers both the hardware and software as well as
any languages, libraries or frameworks that will be used to develop the
modules of the project.

Python

Python is a high level programming language that has quite mature libraries
for machine learning and data science.

Tensorflow

TensorFlow is an open-source software library for dataflow and
differentiable programming across a range of tasks. It is used for building
and training machine learning models, particularly deep neural networks.

TensorFlow also provides several high-level APIs, such as Keras and
Estimator, that simplify the process of building and training deep learning
models. The library also includes tools for visualizing and debugging

models, distributed computing, and deploying models to different
platforms, such as mobile devices or the cloud.

We used tensorflow due to the simplified API as well as is compatibility with
libraries specifically design for Machine learning on low end devices such as
TensorFlow Lite.

TensorFlow Lite

TensorFlow Lite is a lightweight version of the popular open-source machine
learning framework TensorFlow. It is designed specifically for mobile and
embedded devices, making it possible to run machine learning models on
devices with limited resources, such as smartphones, IoT devices, and
microcontrollers.

TensorFlow Lite allows developers to deploy machine learning models on
mobile and embedded devices without the need for a server or internet
connection. It provides a set of tools for optimizing and compressing
machine learning models, making them smaller and more efficient for
deployment on resource-constrained devices.

In addition to model deployment, TensorFlow Lite also provides tools for
model training and conversion. This library was vital in order to optimize the
convolutional neural networks for the edge device, since we began
development of the models before the procurement of the edge device.

OpenCV

OpenCV (Open Source Computer Vision Library) is a popular open-source
computer vision and machine learning software library.

OpenCV provides a wide range of algorithms for image and video
processing, such as object detection, face recognition, feature detection,
image filtering, and more. It also includes tools for camera calibration,
stereo vision, optical flow, and machine learning. The library supports
various image and video file formats and can read and write to different
types of cameras and video streams.

We mainly used OpenCV to extract frames, resize them and to convert them
to grayscale to reduce the intensive need for compute resources.

Dlib

The Dlib Python API provides a simple and intuitive interface to access
powerful tools and algorithms for image processing, including facial
detection and landmark detection.

shape_predictor_68_face_landmarks.dat is a pre-trained model file for facial
landmark detection in Dlib. It contains a machine learning model that has
been trained to identify 68 specific points on a face, including the corners of
the eyes, nose, mouth, and chin.

Dlib uses the shape_predictor_68_face_landmarks.dat file in its facial
detection and recognition algorithms. By detecting and locating these
specific landmarks, Dlib can accurately identify and track faces in an image
or video. This information can then be used for a wide range of applications,
including facial recognition, emotion detection, and gaze tracking.

Infrared Camera

It features a 5-megapixel sensor and can capture still
images and video at a resolution of 2592 x 1944
pixels.

What sets this camera module apart from others is
its infrared night vision capability. It has a built-in
infrared (IR) LED that illuminates the surrounding
area with invisible IR light, enabling the camera to
capture images in complete darkness. The IR LED is
controllable, allowing users to adjust the brightness
and turn it on or off as needed.

picamera

picamera is a Python library that provides a way to capture images and video
using the Raspberry Pi camera module.

It allows you to set various camera parameters, such as resolution, frame
rate, and exposure, and provides a way to capture images and video to files
or streams. The library also supports various image and video formats,
including JPEG, PNG, and H.264.

Figure 4 IR Camera

MPU6050 Accelerometer

The MPU6050 is a commonly used
accelerometer and gyroscope sensor
module. It is designed to measure
acceleration, rotation, and tilt of a device
or object. The module consists of a MEMS
(Micro-Electro-Mechanical Systems)
accelerometer and a MEMS gyroscope,
along with a digital motion processor
(DMP) that performs complex calculations
on the sensor data to provide accurate
readings of orientation, acceleration, and
other motion-related parameters.

For our project, we will only concern ourselves with the accelerometer. The
accelerometer measures linear acceleration along three axes (X, Y, and Z)
and provides acceleration data in units of meters per second squared (m/s²).

The sensor was chosen as it communicates with a microcontroller or other
devices through an I2C interface, as our chosen edge device does not
support communication through analogue means. I2C allows the sensor to
communicate with other devices using digital signals rather than analogue
signals.

The second reason was the mpu6050 raspberry pi python library.

The MPU6050 Raspberry Pi Python library is a Python library that allows
developers to interact with the MPU6050 accelerometer and gyroscope
sensor using the Raspberry Pi. The library provides a simple and easy-to-use
interface for reading data from the MPU6050 sensor and processing it within
a Python program.

The MPU6050 Raspberry Pi Python library can be installed using the pip
package manager, which makes it easy to integrate into existing Python
projects. Once installed, the user can access the MPU6050 sensor by
importing the library and using its provided functions and classes.

These features made the integration and calibration of the accelerometer
much easier.

Figure 5 MPU6050 Accelerometer

Raspberry Pi 4

The Raspberry Pi 4 is a powerful and versatile single-board computer that
offers a lot of features and capabilities in a small form factor and at an
affordable price point. It is powered by a Broadcom BCM2711 quad-core
Cortex-A72 64-bit processor clocked at 1.5 GHz and features ample
connectivity in the form of dual-band 802.11ac wireless networking,
Bluetooth 5.0, Gigabit Ethernet.

These factors made it a very good candidate for the development and
integration of the Driver Drowsiness Detection system.

Figure 6 Raspberry Pi 4 b

For web development, we used the following tools:

Django (for backend):

Django is a high-level Python web framework that is used for rapid
development of secure and maintainable websites and web applications. It
was first released in 2005 and is open-source software. It follows the Model-
View-Controller (MVC) architectural pattern and focuses on the reusability
and "pluggability" of components, which allows for faster and more efficient
development of web applications. This was the main reason we chose this
library for the backend.

React (for frontend):

React is a JavaScript library that is used for building user interfaces. It was
developed by Facebook and first released in 2013. React allows developers to
build reusable UI components that can be used to create complex and

interactive web applications. We chose to use react for the frontend due to
its simplicity, efficiency, and the vast community support and resources
available.

For testing, we used the pytest library.

Pytest

Pytest is a popular testing framework for Python programming language. It
provides a simple and easy-to-use interface for writing and executing tests. It
supports a wide range of testing options and features, including fixtures,
parameterization, test discovery, and test coverage analysis. It is designed to
be flexible and customizable, allowing developers to write tests in a variety of
styles and formats.

As both of the sub modules, the Drowsiness Detection System and the
website will be developed using libraries and frameworks of python, the use
of pytest streamlines the testing process.

DETAILED DESIGN AND ARCHITECTURE

5.1 SYSTEM ARCHITECTURE

The system consists of an edge device along with a camera. A machine
learning model would be deployed on the edge device that would keep
check of the driver’s behaviour, making sure that the driver is attentive to the
road. It will use a buzzer to either the vehicle’s stereo system to alert the
driver.

5.1.1 Architecture Design Approach

The program logic has been developed using Procedural Design
Methodology.

Procedural Design Methodology is a systematic and structured approach to
designing and developing computer programs or systems. It involves
defining a series of procedures to achieve a specific outcome, such as solving
a problem or completing a task.

There is no specific "procedural design methodology" that is commonly used
in the development of Machine Learning (ML) based real-time applications.
However, as Neural Network models can exclusively use functions it can be
said to be following the procedural programming paradigm.

5.1.2 Architecture Design & Subsystem Architecture

The higher-level architecture diagram of the system is as follows:

Figure 7 High level architecture Block diagram

The camera records the driver's footage and sends it to the buffer after pre-
processing. The model then classifies the image and the drowsiness
detection module then determines whether the driver is drowsy or not. The
user is alerted to wake up via a buzzer. The accelerometer can detect an
accident via deceleration, in which case the system can store the last few
seconds of the footage in the memory. The user can then upload that
footage on the server. The developers can retrain the model and upload it to
the server so the users can update their systems.

The program logic on the edge device follows procedural programming,
hence it does not follow a specific architecture. The website on the other
hand will use the model view controller architecture.

Figure 8 UML Diagram for Website architecture

The website consists of 9 views but 3 models as some views do not have any
functionality. The views are what the user sees and interacts with while the
controller manages how the view affects the models. It then updates the
views to reflect those changes.

The Home View provides an introduction to the project to the website visitor.
It links to the Services View, Application View, Subscription View as well as
back to itself.

The Services View provides information about the features of our project. It
links to the Home View, Application View, Subscription View and lastly back to
itself.

The Application View provides information on who can benefit from the use
of our project. It links to the Home View, Services View, Subscription View and
lastly back to itself.

The Subscription View display subscription plans that the user can opt for the
use of our project. It links to the Home View, Services View, Application View
and lastly back to itself.

The Login view allows the user to login to the website. It corresponds to the
user model. After authentication, it will check if the user is from staff. Upon
confirmation, it will link to the admin panel. Otherwise, it will link to the user
panel.

The admin panel allows the admin to load users, register new users and
remove inactive users. It also allows the admin to load and review complaints
as well as issue the updated models. Logging out leads the user back to the
Home View.

The User Panel is what the customer would see upon successfully logging in.
The user would then have the option to either lodge a complaint by linking to
the Complaint View or download the updated models via the Model View.

The Complaint View allows the user to lodge a complaint. The User can
upload footage and add comments to supplement their complaint. The user
is taken back to the User Panel upon successfully lodging or cancelling their
complaint. The Complaint View corresponds to the Complaint Model.

The Model View allows the user to download the updated models. The user is
taken back to the User Panel after downloading the model or cancelling their
download. The Model View corresponds to the Model Model.

The Controller acts as an intermediary between the Model and the View,
handling user input, updating the Model, and updating the View as
necessary.

5.1.3 Dataflow of the system

The system consists of two modules, the edge device and the website.

Edge Device:

Figure 9 Edge Device Dataflow

The system takes the video stream from the camera and extracts the frames.
It then pre-processes the frames to extract relevant features such as the
nose and mouth of the driver and to transform these features into a suitable
format that is compatible with the Convolutional Neural Networks. These
frames are then fed into a buffer which is then fed into the CNN models for
driver drowsiness detection. Additionally, in the event of an accident, the
accelerometer can detect deceleration and hence instruct the system to
write the buffer to the memory which can then be reviewed for inspecting
system defects and ensuring quality control.

Website:

Figure 10 Website Dataflow

As the web ecosystem does not feature extensive functionality, the data flow
diagram for it is quite simple. The user can retrieve the accident data from
the system and upload the complaint report for product review. If the
complaint is appropriate, the developers can then retrain the model and
release it on the server for the users to download and update their system.

5.2 DETAILED SYSTEM DESIGN

As the system uses the Procedural Approach, the design will be illustrated by
the following diagram.

Activity Diagram:

Figure 11 System Activity Diagram

The activity diagram shows the overall program logic. When the program
begins, it starts capturing frames from the video using an IR camera. The
frames are then further pre-processed to get three separate regions from a
person’s face; left eye, right eye and mouth. The extracted regions are
cropped and then fed to corresponding models to get inference about the
eyes being open or closed and whether there is yawning or not.

The frequency of person yawning and closed eyes is continuously calculated
inside the buffer to get PERCLOS measurements for the last 5 frames, if
PERCLOS value is exceeding the defined limit, then the alarm through buzzer
will be generated to alert the drowsy driver till the buzzer is manually turned
off by the driver.

Alongside, the frames are being saved to memory buffer and upon detecting
the accident through accelerometer, the last 5 seconds footage will be saved
to memory device.

As the overview describes most of the functionality, we are going to looks at
the behavioural design of the system.

5.2.1 Drowsiness Detection

This module uses a camera to detect the users face. Due to the low resources
available, the system records the driver’s footage at the standard resolution
of 480p at 24 frames per second. The picamera library is used to read the
camera stream while OpenCV handles the image manipulation. Frames are
extracted from the stream and then converted into a grayscale image. Then
we extract the relevant features such as the eyes and the mouth of the driver.

For this, we use the dlib library along with the
shape_predictor_68_face_landmarks.dat pre-trained model. To detect the
right eye, we extract the landmarks L36 to L41. For the left eye we extract L42
to L47. Lastly for the mouth we extract L48 to L67. These features are then
resized to 256 x 256 dimension before being used for inferencing.

Figure 12 Dlib Facial Landmarks

The Drowsiness Detection module uses 2 convolutional neural networks.
Both models follow the same architecture. They comprise of 9 layers, with
3,784,689 trainable parameters. The first layer is a 2D convolutional layer
with 128 filters, followed a max pooling layer. Then the feature map passes
through three more 2D convolutional layers having 64, 32 and 16 filters
respectively. After Dropout, another pooling layer of depth 16 is used. Then
the feature map is flatten to be fed into a dense layer of size 64. Lastly, the
final layer consists of a single neuron for classification. The final layer uses
the sigmoid function while the hidden layers use the ReLU activation
function.

Figure 13 CNN model architechture

The system inferences the both the models and then uses a modified
version of the PERCLOS algorithm to predict drowsiness detection.
PERCLOS analyses the driver drowsiness level using eye states. The
modified version of our algorithm incorporates the yawning metric as well.

The system observes the last five frames in the buffer for both yawning
and blinking. Then it uses the formula

=0.75(blinkpos_pred/ total blinks) +0.25 (yawnpos_pred/ total yawns)

Blinkpos_pred is drowsy output from eye model while yawnpos_pred is
drowsy output from yawn model. We assigned a higher weightage to the
eye model as a drowsy person is more likely to close their eyes than yawn.

If the value is larger than 0.55, the driver is identified to be drowsy.

Behaviour Diagram

When the system is booted, the system is in the Recording state. The video is
then preprocessed in the Preprocessing state. These frames are then fed to
the ML model in the Prediction state. Now if the Driver is found to be drowsy,
the system turns ON the buzzer, then continues inferencing from the
Recording State. If the Driver is not drowsy and the buzzer is ON, then the
system turns off the Buzzer and continues inferencing from the Recording
state. Furthermore, if the buzzer is off and driver is not drowsy, the system
will continue inferencing from the Recording State. Lastly, the system can be
shut down to enter the terminal state.

Figure 14 Drowsy Driver Event

5.2.2 Accident Detection

The system detects an accident using readings from the MPU6050
accelerometer. It records the acceleration of the driver every second. If the
change in acceleration is greater than 8 meters per second squared, the
system saves the footage and shuts down.

The accident threshold was determined to be 8 meters per second squared
as it is the minimum deceleration required in case of an accident to deploy
the airbags for most passenger cars [8].

Behaviour Diagram

For accident detection, the system can detect an accident by using the
accelerometer and enter a saving state where it can save the footage from
the buffer into the memory. The system can then be turned off to enter the
terminal state.

Figure 15 Accident Detection Event

5.2.3 Website

User Interface Design:

As the edge device is an embedded system, it does not have a UI for the user
to interact with. The system is going to enact a plug and play approach.

Screen Objects and Actions:

The website consists of 9 views, they are listed below:

1. The Home page:

This page shows the purpose and reason for the project.

Figure 16 Home Page

2. The Services page:

This page showcases the features of the project.

Figure 17 Services Page

3. The Applications page:

This page shows who can benefit from our services in what manner.

Figure 18 Application Page

4. The Subscription page:

This page allows the user to sign up for the service.

Figure 19 Subscription Page

5. The Login view:

This page allows the user to log in for the service.

Figure 20 Login View

6. Admin Panel

If the login view detects a super user, they are taken to the admin panel. Here
the admin can manage user accounts, view and manage complaints as well
as model updates.

Figure 21 Admin Panel

7. User Panel

What the user sees upon logging in to the portal. Here the user is given
options to either lodge a complaint or download model updates.

Figure 22 User Panel

8. The Download Models view:

This page contains the download links for the previous models as well as the
release notes that denote the updates featured. The user can click on the link
to download the new models.

Figure 23 Models View

9. The Complaints view:

This page allows the user to upload the footage of the accident and provide

details about the accident using the comments text box.

Figure 24 Complaints View

IMPLEMENTATION AND TESTING

6.1 Workflow

The development methodology used for this project was Kanban.

Kanban is a software development methodology that emphasizes visualizing
the workflow, limiting work in progress (WIP), and continuously delivering
small batches of work. It originated in manufacturing, where it was used to
optimize production processes, but has since been adapted for use in
software development.

The goal was to limit the amount of work in progress at any given time, so
that we could focus on completing current tasks before moving on to the
next one. This helped to reduce bottlenecks and improve the flow of work
through the development process.

The tool used for tracking progress was ASANA. We used five column to
classify tasks on our Kanban whiteboard. The columns were:

 To Do: Tasks that were identified but not yet planned for or started.
 Design: Tasks for which the structure and rubrics were being laid out.
 Development: Tasks for which coding and optimization had begun
 Testing: Modules were tested against the requirements of the project
 Done: All the tasks that had passed the preceding stages and were

deemed complete.

The high level structure of our workflow comprised of Research and
Overview, Compiling the Dataset, Training and Developing the Model,
Integration and Evaluation of system and lastly developing the web portal.
These modules are listed in a sequential order.

6.1.1 Research and overview

We read up on related literature and researched products and solutions
similar to the ones described above.

6.1.2 Compiling Dataset

The first step is to collect data on how drowsiness affects a person's
behaviour. This can include collecting data on eye movements, facial
expressions, head movements, and other physical and behavioural
indicators of fatigue.

For our system, we collected data for eyes and mouth to detect blinking and
yawning. We primarily used datasets from Kaggle, however we augmented
them with additional images from sources such as Pinterest, the noun
project and other stock image repositories.

For eyes, we used the MRL eye dataset [9]. The dataset consists of 84,898
images, collected from 37 different persons, 33 men and 4 women.

For yawning, we had to search quite a bit to gather useful materials. We had
to combine two kaggle datasets, Drowsiness_dataset[10] and Yawning
Dataset Classification[11]. Furthermore, we had to augment this dataset by
scrapping images from various sources such as pinterest, thenounproject
and other various stock image websites.

6.1.3 Training and developing Model

Model development: Based on the extracted features, we trained a wide
variety of models to achieve acceptable performance.

In the end, we settled on CNN models to detect signs of drowsiness. The
details of the model are listed in section 5.2.1.

For an objective evaluation, we used yet another dataset to simulate real
world driving conditions. The NITYMED dataset [12] features 130 videos taken
of 21 subjects, 10 females and 11 males, driving at night in Patras, Greece.

6.1.5 Integration and Evaluation of system (edge device)

System integration (edge device): Next we integrate them into a complete
drowsiness detection system. This involved integrating the model with
hardware components such as the camera and the edge device through the
use of some program logic.

6.1.6 Developing the website

Web Development: Finally we develop the companion website that would
complete the user experience.

6.2 Testing

The tests were carried out using the pytest library. We prioritized the testing
of the functional requirements over non-functional ones. The reason was
due to the real time critical nature of our system.

6.2.1 Unit testing

The test cases are listed below along with the corresponding functional
requirement.

Drowsiness Detection:

Test Case ID: Fun_11 Test Designed by: Noor ul Huda Ajmal

Test Priority (Low/Medium/High): High Test Designed date: 12th April 2023

Module Name: Facial Landmarks
Extraction Test Executed by: Noor ul Huda Ajmal

Test Title: The get_facial_landmarks
function correctly detects facial
landmarks in an input image Test Execution date: 12th April 2023

Description: The numpy array returned
by ‘get_facial_landmarks()’ function
must have 68 rows representing face
landmarks.

Unit
Code

detector = dlib.get_frontal_face_detector()
predictor =
dlib.shape_predictor("detectors/shape_predictor_68_face_lan
dmarks.dat")

read an image with a face
img = cv.imread("img.png")
conversion to gray scale
img = get_gray(img)
detect facial landmarks using the function
landmarks = get_facial_landmarks(img)
verify that the output is an array of landmarks
assert isinstance(landmarks, np.ndarray)
assert landmarks.ndim == 2
assert landmarks.shape[1] == 2

verify that the landmarks are within the expected range
assert landmarks[:, 0].min() >= 0 and landmarks[:, 0].max()
< img.shape[1]

assert landmarks[:, 1].min() >= 0 and landmarks[:, 1].max()
< img.shape[0]

Input
Data

Expected
Results

2-dimensional numpy array with 68 landmarks of the face

Actual
Results

2-dimensional numpy array with 68 landmarks of the face

Test Case ID: Fun_12 Test Designed by: Noor ul Huda Ajmal

Test Priority (Low/Medium/High): High Test Designed date: 12th April 2023

Module Name: Facial Landmarks
Extraction Test Executed by: Noor ul Huda Ajmal

Test Title: The get_facial_landmarks
function correctly handles cases where no
face is detected Test Execution date: 12th April 2023

Description: When there is no face in the
input frame/image, the function should
return -1

Unit Code # create an image with no faces
img = np.zeros((100, 100, 3), dtype=np.uint8)

detect facial landmarks using the function
landmarks = get_facial_landmarks(img)

verify that the output is -1 (indicating no face was
detected)
assert landmarks == -1

Input Data

Expected
Results

The function would return -1

Actual Results The function returns -1

Test Case ID: Fun_15 Test Designed by: Noor ul Huda Ajmal

Test Priority (Low/Medium/High):
High Test Designed date: 12th April 2023

Module Name: Drowsiness Detection Test Executed by: Noor ul Huda Ajmal

Test Title: The program could detect
and print the drowsiness level Test Execution date: 12th April 2023

Description: In case of drowsy
person, the program should detect
drowsiness and prints drowsiness
level

Unit Code -

Input Data video / <class 'cv2.VideoCapture'> with drowsy behaviour of the
person

Expected
Results

The drowsiness level/percentage must be above 60%

Actual Results Drowsy Level....0.60%
Drowsy Level....0.60%
Drowsy Level....0.65%
Drowsy Level....0.65%
Drowsy Level....0.70%
Drowsy Level....0.70%

Alert Driver

Test Case ID: Fun_13 Test Designed by: Noor ul Huda Ajmal

Test Priority (Low/Medium/High): High Test Designed date: 12th April 2023

Module Name: Buzzer Test Executed by: Noor ul Huda Ajmal

Test Title: The beep function correctly
produces an audible beep Test Execution date: 12th April 2023

Description: Upon calling beep function, the
buzzer should beep for 1sec upon 1kHz
frequency

Unit Code # set up a mock system call that logs arguments to a
list
call_log = []

def mock_system_call(cmd):
 call_log.append(cmd)

os.system = mock_system_call

call the buzzer function
beep()

verify that the system call was made with the
expected arguments
assert len(call_log) == 1
assert call_log[0] == "beep -f 1000q -l 1500"

Input Data system call

Expected
Results

The beep sound of the pre-specified frequency and time

Actual Results The beep sound of the pre-specified frequency and time

Accident Detection

Test Case ID: Fun_13 Test Designed by: Shaheer Ahmed

Test Priority (Low/Medium/High): Medium Test Designed date: 12th April 2023

Module Name: Accelerometer Test Executed by: Shaheer Ahmed

Test Title: Accident detection Test Execution date: 12th April 2023

Description: The system should detect an
accident is the change in deceleration is
greater than 8 meters per second squared.

Unit
Code

import pytest
from accident import *
import mock
from mock import patch

@pytest.fixture
def accel_data():
 return {"x": 1, "y": 2, "z": 3}

def test_changeaccel(accel_data):
 # Initial values of x, y, and z are set to 0
 global x1, y1, z1
 x1 = 12
 y1 = 3
 z1 = 1

 # Set the acceleration data to exceed the threshold
value of 8
 accel_data["x"] = 2
 accel_data["y"] = 3
 accel_data["z"] = 1

 # Check if the changeaccel function returns True
 assert changeaccel(accel_data) == True

 # Set the acceleration data to be within the threshold
value of 8
 accel_data["x"] = 1.5
 accel_data["y"] = 2.5
 accel_data["z"] = 3.5

 # Check if the changeaccel function returns False
 assert changeaccel(accel_data) == False

Input
Data

x1 = 12
y1 = 3
z1 = 1

accel_data["x"] = 2

accel_data["y"] = 3
accel_data["z"] = 1

accel_data["x"] = 1.5
accel_data["y"] = 2.5
accel_data["z"] = 3.5

Expected
Results

Both test cases pass

Actual
Results

Both test cases passed

Test Case ID: Fun_18 Test Designed by: Shaheer Ahmed

Test Priority (Low/Medium/High): Medium Test Designed date: 12th April 2023

Module Name: Footage Test Executed by: Shaheer Ahmed

Test Title: Accident detection Test Execution date: 12th April 2023

Description: The system should save the
footage of the driver upon detecting an
accident.

Unit
Code

def testsavefootage(accel_data):
 # Initial values of x, y, and z are set to 0
 accident.x1 = 12
 accident.y1 = 13
 accident.z1 = 1

 # Set the acceleration data to exceed the threshold
value of 8
 accel_data["x"] = 2
 accel_data["y"] = 3
 accel_data["z"] = 1

 # Check if the changeaccel function calls save footage
 with patch.object(accident, 'savefootage') as mock:
 changeaccel(accel_data)

 mock.assert_called()

Input
Data

x1 = 12
y1 = 13
z1 = 1

accel_data["x"] = 2
accel_data["y"] = 3
accel_data["z"] = 1

Expected
Results

Test case is passed

Actual
Results

Test case is passed

6.2.2 System Testing

As the website had used the Model View Controller (MVC) architecture, the
components are interdependent. As such, we performed end to end testing
to test the functional requirements of the website.

Updates portal:

Test Case ID: Fun_16 Test Designed by: Shaheer Ahmed

Test Priority (Low/Medium/High):
High

Test Designed date: 20th March 2023

Module Name: Models Test Executed by: Shaheer Ahmed

Test Title: users can download
updated models using the model
view

Test Execution date: 26th March 2023

Description: The user can download
updated models by clicking the
download links in the model view.

Pre-conditions:

 User has provided valid username and password.
 User has navigated to model view

Dependencies:

Ste
p Test Steps Test Data Expected

Result
Actual
Result

Status
(Pass/Fail) Notes

1
Navigate to app
website link.

None The browser
initiates a
download.

Model update is
downloaded

Pass

 -

2 Click ‘download’

Post-conditions:
Updated Model is downloaded

Complaints Portal:

Test Case ID: Fun_15 Test Designed by: Shaheer Ahmed

Test Priority (Low/Medium/High):
High

Test Designed date: 20th March 2023

Module Name: Complaints Test Executed by: Shaheer Ahmed

Test Title: users can lodge complaint
using complaint view

Test Execution date: 26th March 2023

Description: The user can lodge a
complaint in complaint view by
providing footage in a valid format as
well as adding comments with up to
500 characters

Pre-conditions:

 User has provided valid username and password
 User navigates to the complaints view

Dependencies:

Ste
p Test Steps Test Data Expected

Result
Actual
Result

Status
(Pass/Fail) Notes

1
 Navigate to app
website link.

Uploaded
footage.jpeg

Entered
“Accident

occurred at 9th

Avenue on 11th

March. I don’t
understand why
the buzzer did

not work”.

Complaint is
submitted.

User is directed
to user panel

after complaint
is submitted.

Pass

 -

2

Upload a file with
a valid file
format.

3 Enter comments.

4 Click ‘submit’.

Post-conditions:
Complaint is submitted

RESULTS AND DISCUSSION

The eyes model has an accuracy of 87% while the yawn model has an
accuracy of 88%. As there is nothing similar available on the market, we
cannot make any direct comparisons to any aftermarket systems. The
comparison with systems from BMW and Ford would be unfeasible as those
vehicles are not available in Pakistan.

The project delivers on all the functional requirements we set out to fulfil.
There were a number of challenges faced while making this project.

One of the primary challenges was the lack of good quality public datasets.
Although some datasets are available, they may not be representative of
real-world scenarios and may have limited data variability. This can affect the
accuracy of the model. Curating a dataset manually would not only be time
consuming but also expensive, considering the amount of participants and
equipment that would be required to collect data that has good class
distribution and is usable.

In addition to the lack of good quality public datasets, the lack of availability
of edge devices was another challenge. Edge devices such as Nvidia Jetson
Nano and Raspberry Pi 4 are suitable for running machine learning models
in real-time on low-power hardware. However, these devices are expensive
and are not easily accessible, making it difficult to develop and test models
for drowsiness detection.

Furthermore, stability issues may arise when running machine learning
models on low-power systems. The system may freeze or crash due to the
limited processing power, which negatively impacts the availability of the
system. Therefore, addressing stability issues is an important factor that
needs to be taken into consideration while training a model for drowsiness
detection.

Lastly, optimizing neural networks for low-power systems is another
challenge in training a model for drowsiness detection. The model needs to
be designed to operate within the constraints of low-power hardware while
still providing accurate results. This is a complex task as one would need in-
depth knowledge about the hardware capabilities of the system as well as
the operating conditions that the system would normally experience. This
can be a complex task that requires extensive knowledge of machine
learning and computer vision algorithms. Further research is required to

develop better methods for optimizing neural networks for low-power
systems.

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The Driver Drowsiness detection system was developed to provide drivers
with a plug and play aftermarket system that detects drowsiness and
prevents road accidents. This is achieved through the marriage of Internet of
Things (IoT) and Machine Learning. Furthermore, the implementation of
Continuous Quality Improvement (CQI) breathes an air of innovation to this
previously stale field.

8.2 Impact on Society

The implementation of drowsiness detection systems in vehicles has the
potential to significantly impact society in various ways. Primarily, such
systems can lead to an increase in safety on the roads by detecting when a
driver is getting drowsy and alerting them or taking corrective action.
Drowsy driving is a major cause of accidents, injuries, and fatalities on the
roads. Therefore, the use of drowsiness detection systems could potentially
prevent many accidents, leading to a reduction in the overall burden of injury
and loss of life due to traffic accidents.

Furthermore, drowsiness detection systems can contribute to the improved
well-being of drivers. By alerting drivers when they are getting drowsy, these
systems can encourage drivers to take breaks or stop driving altogether,
thereby avoiding the physical and mental strain of driving while fatigued.
This, in turn, can lead to a reduction in stress, improved mental health, and
an overall enhancement of the quality of life for drivers.

In addition, the implementation of drowsiness detection systems could also
potentially lead to increased productivity. By allowing drivers to drive for
longer periods without risking drowsiness-related accidents, these systems
can help improve efficiency and reduce costs for businesses, especially for
commercial drivers such as truck drivers who need to cover long distances in
a short amount of time.

The potential economic benefits of drowsiness detection systems should
also be considered. The reduction of the number of accidents and fatalities
on the roads can help reduce the burden on healthcare systems, insurance
providers, and other sectors that are affected by traffic accidents.

Additionally, the increased safety and well-being of drivers can lead to
increased productivity, which can help boost economic growth.

8.3 Future Work

As with any project, this system has room for improvement. In the future, we
would like to:

 Implement the system as a self-contained system with added
functionality, for example lane assist and blind spot monitoring.

 Improve program optimization so we can use even lower power
hardware to reduce system costs

 Provide automatic updates using Over The Air (OTA) nodes for areas
with good connectivity

REFERENCES
[1] Milenkovic, D. (2022, February 23). Distracted Driving Statistics & Facts for 2022.
Carsurance. Retrieved from https://carsurance.net/insights/distracted-driving-
statistics/#:%7E:text=%E2%80%93%20Every%20year%2C%20there%20are
%202.5,driver%20in%20the%20United%20States.

[2] World Health Organization. (2011). Global status report on road safety 2013:
supporting a decade of action.
https://www.who.int/publications/i/item/9789241564564
[3] National Highway Traffic Safety Administration. (n.d.). Drowsy Driving.
https://www.nhtsa.gov/risky-driving/drowsy-driving
[4] European Transport Safety Council. (2020). PIN Flash Report 43: Progress in
reducing deaths and serious injuries on EU roads. https://etsc.eu/pin-flash-report-
43-progress-in-reducing-deaths-and-serious-injuries-on-eu-roads/

[5] BMW upgrade measures taking effect from summer 2013. (n.d.). BMW Group
PressClub. Retrieved from,
https://www.press.bmwgroup.com/global/article/detail/T0141144EN/bmw-model-
upgrade-measures-taking-effect-from-the-summer-of-2013

[6] Ford’s Wake-Up Call for Europe’s Sleepy Drivers. (n.d.). Retrieved from
https://web.archive.org/web/20110513232258/http://media.ford.com/article_print
.cfm?article_id=34562

[7] Driver Fatigue and Drowsiness Monitoring System (Canceled). (n.d.). Kickstarter.
Retrieved from https://www.kickstarter.com/projects/hightech/ai-powered-plug-n-
play-driver-fatigue-monitoring-system

[8] Insurance Institute for Highway Safety (IIHS). (n.d.). Airbags. Retrieved from
https://www.iihs.org/topics/airbags#:~:text=Typically,%20a%20front%20airbag
%20will,up%20to%20these%20moderate%20speeds.

[9] MRL Eye Dataset. MRL. (n.d.). http://mrl.cs.vsb.cz/eyedataset

[10] Drowsiness_dataset. (2020, September 27). Kaggle.
https://www.kaggle.com/datasets/dheerajperumandla/drowsiness-dataset

[11] Yawning Dataset Classification. (2023, April 3). Kaggle.
https://www.kaggle.com/datasets/deepankarvarma/yawning-dataset-
classification

[12] NITYMED. (2022, July 9). Kaggle.
https://www.kaggle.com/datasets/nikospetrellis/nitymed

https://carsurance.net/insights/distracted-driving-statistics/#:~:text=%E2%80%93%20Every%20year%2C%20there%20are%202.5,driver%20in%20the%20United%20States
https://carsurance.net/insights/distracted-driving-statistics/#:~:text=%E2%80%93%20Every%20year%2C%20there%20are%202.5,driver%20in%20the%20United%20States
https://carsurance.net/insights/distracted-driving-statistics/#:~:text=%E2%80%93%20Every%20year%2C%20there%20are%202.5,driver%20in%20the%20United%20States
https://www.kaggle.com/datasets/deepankarvarma/yawning-dataset-classification
https://www.kaggle.com/datasets/deepankarvarma/yawning-dataset-classification
https://www.kaggle.com/datasets/dheerajperumandla/drowsiness-dataset
http://mrl.cs.vsb.cz/eyedataset
https://www.kickstarter.com/projects/hightech/ai-powered-plug-n-play-driver-fatigue-monitoring-system
https://www.kickstarter.com/projects/hightech/ai-powered-plug-n-play-driver-fatigue-monitoring-system
https://www.nhtsa.gov/risky-driving/drowsy-driving

	1. INTRODUCTION
	1.1. Problem
	1.2. Proposed Solution: Driver Drowsiness Detection
	1.3. Core Functionalities
	1.4. Summary
	2. LITERATURE REVIEW
	2.1. Accidents Due to Drowsiness
	2.2. Existing Solutions
	2.3. Why Driver Drowsiness Detection System
	3. PROBLEM DEFINITION
	3.1. System aim
	3.2. Audience Of The Project
	3.3. Impact
	4. SYSTEM FEATURES
	4.1. Functional Requirements
	4.2. Use cases
	4.3. Tools and Technologies
	5. DETAILED DESIGN AND ARCHITECTURE
	5.1. SYSTEM ARCHITECTURE
	5.1.1. Architecture Design Approach
	5.1.2. Architecture Design & Subsystem Architecture
	5.1.3. Dataflow of the system
	5.2. DETAILED SYSTEM DESIGN
	5.2.1. Drowsiness Detection
	5.2.2. Accident Detection
	5.2.3. Website
	6. IMPLEMENTATION AND TESTING
	6.1. Workflow
	6.1.1. Research and overview
	6.1.2. Compiling Dataset
	6.1.3. Training Model
	6.1.4. Testing Model
	6.1.5. Setting up system (edge device)
	6.1.6. Developing the website
	6.2. Testing
	6.2.1. Unit Testing
	6.2.2. System Testing
	7. RESULTS AND DISCUSSION
	8. CONCLUSION AND FUTURE WORK
	8.1. Conclusion
	8.2. Impact on Society
	8.3. Future Work
	9. REFERENCES
	

